Actas II Jornadas Argentinas de Didáctica de la Programación

Editores:

Araceli Acosta Belén Bonello Cecilia Martínez Sonia Permigiani Nicolás Wolovick

ACTAS II JORNADAS ARGENTINAS DE DIDÁCTICA DE LA PROGRAMACIÓN

Actas II Jornadas Argentinas de Didáctica de la Programación / Alejandro Iglesias... [et al.]; editado por Araceli Acosta... [et al.].- 1a ed.- Córdoba: Universidad Nacional de Córdoba. Facultad de Filosofía y Humanidades, 2020.

Libro digital, PDF

Archivo Digital: descarga y online ISBN 978-950-33-1600-9

1. Didáctica. 2. Lenguaje de Programación. 3. Formación Docente. I. Iglesias, Alejandro. II. Acosta, Araceli, ed. CDD 004.071

COMITÉ ACADÉMICO

Araceli Acosta
Marcelo Arroyo
Francisco Bavera
Luciana Benotti
María Belén Bonello
Virginia Brassesco
Claudia Casariego
Marcela Daniele
Gladys Dapozo
Gustavo Del Dago
Maria Emilia Echeveste
Marcos Gomez
Carolina Gonzalez
Guillermo Grosso
Renata Guatelli

Marta Lasso Maria Carmen Leonardi Matías López Rosenfeld Cecilia Martinez Pablo E. Martínez López Analia Mendez Natalia Monjelat Sonia Permigiani María Valeria Poliche Claudia Queiruga Jorge Rodríguez Alvaro Ruiz-de-Mendarozqueta Claudia Cecilia Russo Alfredo Héctor Sanzo Fernando Schapachnik Herman Schinca Pablo Turjanski Nicolás Wolovick Dante Zanarini

Rafael Zurita

EDITORES

Diego Letzen

Araceli Acosta Belén Bonello Cecila Martínez Sonia Permigiani Nicolás Wolovick

ILUSTRACIÓN DE TAPA

Manuel Coll – Área de Comunicación Institucional – FFyH – UNC

Esta obra está bajo una <u>Licencia Creative Commons Atribución-NoComercial-CompartirIgual</u> 4.0 Internacional.

Formación docente y Currículum en el campo de las Ciencias de la Computación en dos provincias Argentinas

María Cecilia Martínez¹, Natalia Monjelat²

Palabras Clave: formación docente, currículum, ciencias de la computación.

1. Introducción

Diversos estudios señalan que la gran mayoría de los estudiantes secundarios tienen altas competencias de manejo de la información con el uso de tecnología, pero escasas competencias para crear, transformar, compartir información y entender el funcionamiento y uso de una computadora (Frailon, 2014). Tampoco dominan saberes que permitan transformar información a partir de algoritmos para automatizar el procesamiento de datos, aspectos esenciales de las Ciencias de la Computación (CC) (Denning, 1989).

En este contexto, en los últimos años diferentes países han realizado esfuerzos para incluir en la oferta educativa de primaria y secundaria contenidos de CC y más específicamente de Programación, ya que ésta permite acceder a diferentes dominios de la computación (Denning, 1989). En esta línea, el análisis del modelo israelí reveló que para lograr la incorporación de las CC en la escuela, se requeriría de 4 grandes elementos relacionados entre sí: 1) Currículum, 2) Investigación en el área de Enseñanza y Aprendizaje de la Computación, 2) Programas de formación docente y 4) Regulación sobre los títulos que habilitan la enseñanza de la computación en las escuelas (Hazza, Gael-Ezze y Blum, 2008). En Argentina, dos provincias con gran densidad poblacional (Córdoba y Santa Fe) fueron las primeras en el país en adherir a un Programa de la Fundación Sadosky, (presidida por el Ex Ministerio de Ciencia y Técnica de la Nación) para ofrecer Postítulos docentes en Enseñanza de las CC, de dos años de duración y una carga horaria de 600hs.

En esta ponencia mostramos cómo la elaboración de dichos Postítulos entre los años 2015 y 2017, supone un quiebre en el currículum, y prepara el camino para la inclusión de las CC en el contexto educativo argentino. Para ello, se analizarán los antecedentes en el currículo y la formación docente en torno a la enseñanza de las CC en las escuelas en estas provincias, identificando algunos criterios que guiaron el desarrollo de los contenidos, particularmente en cuanto a la Programación.

¹ Universidad Nacional de Córdoba, cecimart@gmail.com

² IRICE - CONICET-UNR, monjelat@irice-conicet.gov.ar

2. Aportes teóricos en torno a la noción de Currículum

El currículum es siempre un recorte de un campo disciplinar o área del conocimiento para ser enseñado, que luego las escuelas y los docentes van reconfigurando y adaptando, por lo que la neutralidad curricular no es posible (Terigi, 1999). Gvirtz y Palamidessi (1998) apuntan a tres ámbitos principales que influyen en la construcción del currículum: el campo cultural, el Estado y el mercado. En el caso de la informática podemos trazar una fuerte impronta del mercado que delinea los contenidos que deben incorporarse. En efecto, parte de la demanda de incluir computación en la escuela obligatoria proviene del sector de la industria del software que necesita más programadores (Patterson, 2006). En cuanto al Estado observamos que en Argentina hubo en la década pasada una fuerte inversión en ciencia y una apuesta a desarrollar la ciencia en nuestro país.

Esto requería de especialistas en el área de las CC puesto que el desarrollo digital atraviesa y potencia diferentes áreas del conocimiento. No obstante, las Universidades tienen el problema de que son pocos los estudiantes que eligen carreras relacionadas con la computación. En ese sentido, la introducción temprana de las CC podrían mejorar el desempeño de los estudiantes en estas áreas y generar más interés para considerar la computación como carrera. Desde el campo cultural, las brechas digitales (Benítez Larghi, 2011) y el bajo rendimiento de los estudiantes en habilidades relacionadas con la Alfabetización Digital, también demandan una democratización del saber informático. La escuela es la institución estatal que tradicionalmente se encarga de distribuir el acervo cultural. Estas múltiples demandas, han contribuido a que en algunas provincias se hayan elaborado orientaciones curriculares específicas en el campo de las tecnologías.

3. Métodos

Para analizar los antecedentes de las dos provincias en la promoción de contenidos de computación se recuperaron documentos que ofrecieran información sobre contenidos escolares de computación, y datos estadísticos sobre la oferta educativa en computación en cada provincia. Asimismo se recuperaron registros de las reuniones de los grupos de trabajo en la elaboración de los postítulos, que permitieron reconstruir los debates en torno a los contenidos y propuestas de formación docente así como las tensiones que se presentan en un programa de este tipo. Para identificar los principales contenidos y orientaciones de los diseños curriculares se elaboraron resúmenes y tablas que permitieron comparar y contrastar las propuestas entre provincias y entre niveles educativos. Se analizaron los temas emergentes de los registros de las reuniones.

4. Resultados

4.1. Antecedentes en las propuestas de formación docente en contenidos de las CC

Al momento de desarrollar el postítulo en la Provincia de Córdoba había escasa oferta de formación docente en Computación y nula en Programación. A nivel Universitario existe el Profesorado en CC de la Universidad Nacional de Río Cuarto. Además 5 Institutos de formación docente estatales dictan el profesorado en Educación Tecnológica. No obstante, el Plan de estudios no incluye contenidos específicos de Programación ni CC, sino que forma al futuro docente para ofrecer una enseñanza más general de la tecnología y los procesos tecnológicos. Los profesorados en educación inicial y primaria tampoco incluyen contenidos específicos de Computación, pero sí de lenguajes digitales y TIC (Ministerio de Educación de la Provincia de Córdoba).

Como resultado de la baja oferta formativa identificamos al menos que ½ de los docentes que enseñan materias relacionadas con la informática o la Programación no han tenido formación específica en Programación. Esta información se pudo reconstruir a partir de analizar las formaciones previas de los docentes que se inscribieron a nuestro postítulo. De los 644 postulantes al postítulo, 30,5% de esos docentes se desempeñan en materias relacionadas con la informática y sólo 30% tienen títulos habilitantes para enseñar Programación. No obstante, muchos de ellos no han tenido Programación en los planes de estudio de la carrera que cursaron. Por ejemplo, 40 pre inscriptos que enseñan Programación tienen el título de Profesores de Educación Tecnológica y otros 40 son Licenciados en Tecnología Educativa. 14% de nuestros aspirantes efectivamente enseñan materias que incluyen contenidos de Programación según consigna en sus perfiles, pero no pueden acceder al postítulo por no tener trayecto pedagógico previo que es un requisito según normativas nacionales. La gran mayoría de los pre inscriptos se desempeña en el secundario.

La Provincia de Córdoba acepta 14 títulos habilitantes y 18 títulos supletorios para poder acceder a un cargo de profesor de materias relacionadas con la Computación. Entre estos títulos se encuentra por ejemplo el de Técnico Superior de Instalación de Equipamiento Informático de Nivel Medio y de Administrador de Empresas Informáticas según consta de la lista de títulos habilitantes y supletorios de la Provincia.

Al momento de desarrollar el postítulo en Santa Fe, solo en 2 Institutos de formación docente se dictaba el profesorado en Educación Tecnológica, con un plan de estudios que no aborda contenidos específicos de CC y Programación. Por su parte, los profesorados en educación inicial y primaria cuentan dentro del campo de la formación general con un espacio curricular anual en tercer año denominado "Tecnologías de la Información y la Comunicación" donde se abordan las TIC desde la reflexión crítica sobre su impacto en el escenario socio cultural actual, reconociendo la existencia de una multiplicidad de lenguajes con los que se puede pensar, comunicarse y otorgarle sentido al mundo, identificando a su vez las posibilidades de uso pedagógico (Gobierno de Santa Fe, 2009a y 2009b).

Cuestionarios administrados a los docentes de primaria participantes de la primera cohorte del postítulo en didáctica de las CC dictado en Rosario (n=80), revelaron que un 68% ha participado de trayectos formativos en temáticas vinculadas a la educación y las tecnologías.

En este sentido, un 44% refiere a cursos cortos con duración y programas variados. A su vez un 19% señala haber participado del programa provincial "Tramas digitales" (creado en 2013) orientado a la integración de las nuevas tecnologías en todos los niveles y modalidades del sistema de educación provincial. Un 10% señala haber participado de postítulos nacionales en TIC para primaria o educación especial y otro 10% refiere a otras especializaciones o postítulos dictados por diferentes instituciones tanto privadas como públicas. Por otro lado, en cuanto a saberes específicos de las CC, un 21% tiene experiencia en Programación y dice conocer algunos de los programas más tradicionales que se utilizan para la enseñanza de estas temáticas en contextos escolares.

En síntesis, en ambas provincias predomina un enfoque de formación docente en TIC desde una perspectiva socio-cultural para incluir significativamente las tecnologías en las aulas sin que las CC aparezcan dentro de los trayectos de formación docente.

4.2. La inclusión de los contenidos de las CC en las bases curriculares

En el desarrollo de los planes de estudio, se procedió a identificar cuáles eran los contenidos relacionados con la computación que deberían transmitir los docentes en sus aulas. Se realizó entonces un análisis de las Bases Curriculares de las Provincias para el nivel inicial, primario y secundario. Cabe aclarar que en la provincia de Santa Fe no se dispone de una Ley Provincial de Educación Santafesina, por lo cual se rige por la Ley de Educación Nacional N° 26206/06 (Larraburu et al., 2016). En este sentido, los diseños jurisdiccionales disponibles para nivel inicial y primario se corresponden con las directrices de la Ley Federal de Educación Nº 24.195, sancionada en 1993. Estos diseños se encuentran en proceso de revisión, lo que hace que en la práctica, las instituciones educativas santafesinas del nivel inicial y primario, actualmente tomen como referencia los Núcleos de Aprendizaje Prioritarios (NAP) establecidos por el Consejo Federal de Educación. En estos documentos, se observan algunas referencias a contenidos tecnológicos para el nivel inicial en relación con el (Ministerio de Educación, 2011), mientras que para el nivel primario, se identifica un espacio curricular denominado "Educación tecnológica" desde 1º hasta 6º año (Ministerio de Educación, 2012a; Ministerio de Educación, 2012b).

Contrastando estos datos con los obtenidos en el contexto cordobés los resultados mostraron que los contenidos oficiales no abordaban la computación como objeto de estudio. Se observa entonces que desde el nivel inicial se propone estudiar la "tecnología" en su definición más amplia en tanto productos y técnicas elaboradas por el hombre. Se plantea el uso y reflexión sobre las TIC para gestionar información mas no para transformar datos, enfatizando un uso instrumental de la informática. Solo en el ciclo secundario con orientación en informática aparecen contenidos específicos de las CC (Resolución N° 2630/14; Ministerio de Educación de la Provincia de Córdoba, 2012).

Atendiendo a estas cuestiones, se expresó oportunamente a los referentes ministeriales de ambas provincias la ausencia de contenidos específicos en el currículum oficial, quienes

sugirieron que sean los contenidos del postítulo los que propongan las innovaciones curriculares y otorgaron libertad para la selección de los mismos.

4.3. El sentido de incluir la Programación en la escuela obligatoria y sus derivas en la selección de áreas de conocimiento dentro del campo

Además de identificar los contenidos de las CC que serían deseables para la escuela obligatoria los equipos de trabajo reflexionaron sobre el sentido de incluir estos contenidos en la escuela, considerando los perfiles de los docentes destinatarios y las características de los niveles educativos.

En Córdoba, se observó que el perfil formativo de la orientación en informática y la tecnicatura en informática del nivel secundario enfatizaban una formación para apoyar a los usuarios de software. En cambio, la tecnicatura en Programación proponía una formación para intervenir en las diferentes etapas del desarrollo de software. Para los niveles primarios y de educación general básica se propuso una formación para la comprensión. Acordamos que ofrecer contenidos de CC con énfasis en Programación era necesaria para la construcción de una ciudadanía alfabetizada en los lenguajes de nuestro tiempo. Aprender las bases de la Programación permitiría a los jóvenes comprender las lógicas de funcionamiento de la tecnología digital y desarrollar un pensamiento que incluya la posibilidad de cómputo en la resolución de problemas sociales y naturales. Teniendo en cuenta esta orientación, se recurrió entonces a analizar bases curriculares de Programación nacionales e internacionales. Se tomaron como ejes las propuestas de contenidos sugeridos por la Fundación Sadosky para la escuela obligatoria, los estándares de CUCEN (Consejo Universitario de Ciencias Exactas y Naturales) para el profesorado universitario en Informática y los marcos curriculares de la ACM (Association of Computing Machinery, 2016). Todos estos documentos que presentaban una selección curricular coincidían en dos grandes áreas:

-Área de Programación que incluía a) Fundamentos, Lenguajes Formales, Complejidad, Computabilidad, Autómatas b) Lenguajes de Programación, Resolución de problemas, Paradigmas (imperativo, lógico, funcional, objetos), Análisis comparativo de Lenguajes. c) Estructuras de Datos y Algoritmos d) Bases de Datos

-Área de Sistemas Operativos que incluía a) Arquitecturas, Sistemas Operativos y Redes b) Ingeniería de Software c) Interacción Máquina Hombre.

Además el contenido propuesto por la Fundación Sadosky incluía un Área de Didáctica y Pedagogía y de Representación de la Información que fueron agregados.

En Santa Fe, considerando la disposición del Consejo Federal de Educación que señaló al aprendizaje de la Programación de importancia estratégica para el Sistema Educativo Nacional durante la escolaridad obligatoria (Consejo Federal de Educación, 2015), acordamos que el postítulo tuviera como destinatarios a docentes en servicio del nivel primario. Asimismo, tomando como referencia los planes curriculares de otras instituciones para este nivel así como la experiencia de Córdoba, se decidió que los ejes fueran el

Pensamiento Computacional y la Programación. Con ello se buscaba que los maestros puedan apropiarse de esta forma de pensamiento y del potencial de la Programación para incluirlas en prácticas docentes situadas, interdisciplinares y no excluyentes, en línea a su vez, con la propuesta provincial de los NIC (Núcleos interdisciplinarios de contenidos) donde se plantean proyectos basados en diferentes problemáticas (Ministerio de Educación Provincia de Santa Fe, 2016)

En el caso de Córdoba, cuya experiencia fue crucial para el proceso rosarino, la selección de los contenidos definitivos se realizó a través de un ejercicio de Mapeo Invertido (Elmore, 1979) o Mapeo curricular. Después de comprender cuál era la selección de contenidos mínimos que otros organismos nacionales e internacionales proponían para la escuela primaria y secundaria definimos como equipo cuáles eran los objetivos de aprendizaje que buscábamos para los docentes: ¿Qué queremos que los docentes sepan y hagan al finalizar el postítulo? Después de profundos debates sobre el rol docente y los tipos de saberes que un docente debería dominar para diseñar experiencias de aprendizaje significativas, los objetivos generales decantaron en 3: apropiación de conceptos fundamentales de las CC que les permita seguir aprendiendo y comprendiendo los cambios tecnológicos, reconocimiento de las CC como disciplina con contenidos específicos que se diferencia con el uso de las TIC para poder abordar pertinentemente la enseñanza de la Programación y diseño de experiencias de enseñanza donde se ponga en juego el pensamiento computacional.

En el caso del postítulo de Santa Fe, nuestro objetivo general fue formar docentes capaces de experimentar y reflexionar críticamente acerca de los procesos de desarrollo del pensamiento computacional y la Programación, a los fines de construir las competencias adecuadas al nivel primario que posibiliten una práctica educativa innovadora con énfasis en la resolución de problemas mediante la producción colaborativa e interdisciplinaria de Tecnologías para la Inclusión Social. De esta forma, se entiende que tanto los procesos implicados en las prácticas docentes que incluyan contenidos relacionados con las CC, como los productos generados (programas, videojuegos, simulaciones, historias interactivas, etc.) puedan abordar problemáticas socioeducativas y regionales desde su complejidad (Monjelat, 2017), promoviendo un uso crítico de las herramientas y de conceptos en contextos proyectuales, a partir de poner en obra perspectivas pedagógicas activas, críticas e interdisciplinares (Casali et al., 2018a).

Estos objetivos guiaron el diseño curricular, proceso que implicó múltiples instancias de diálogo, debates y negociaciones entre los miembros de los equipos de trabajo, compuestos por especialistas de las ciencias de la educación y de las ciencias de la computación. En el caso cordobés, una tensión importante que emergió en los debates en torno al contenido, era sobre la profundidad con que se lo abordaría, ya que desde un esquema curricular más tradicional, se sostenía que la apropiación debía ser en profundidad. Recuperamos para estos debates los lineamientos internacionales (ACM, 2013) y aportes revisionistas (Krathwohl, 2002; Churches, 2008) que plantean una propuesta espiralada de apropiación conceptual, proponiendo entonces tres niveles de profundización en los contenidos:

- Familiaridad: los estudiantes adquieren nociones y significados centrales de los conceptos, pero no se requiere que los transfieran, apliquen o construyan nuevas ideas a partir de ellos.
- Uso: El estudiante es capaz de usar o aplicar el concepto en una forma concreta. Usar el concepto puede incluir, por ejemplo, utilizar apropiadamente el concepto en un programa, utilizar una técnica de prueba, o realizar un análisis determinado.
- Dominio: El estudiante es capaz de considerar un concepto desde múltiples puntos de vista y justificar la elección de un determinado enfoque para resolver el problema.
 Además, el estudiante puede producir nuevos saberes, productos o ideas a partir de relacionar conceptos.

Esta construcción espiralada del conocimiento, también fue retornada por la propuesta santafesina, tanto desde los contenidos presentes en los diferentes módulos como desde las propuestas de actividades y trabajos prácticos a lo largo de la especialización (Casali et al., 2018b).

5. Conclusiones

Identificamos que el desarrollo curricular para la escuela obligatoria en el área de tecnología ha ido evolucionando y ganando espacio a lo largo del tiempo. La enseñanza de la Programación implica una continuidad en los esfuerzos de alfabetización digital, pero a su vez una ruptura en el paradigma de inclusión de la tecnología en la escuela. Observamos que algunos avances en el área de Enseñanza y Aprendizaje de la CC materializados en selección de contenidos para propuestas curriculares, tensionan las propuestas de contenidos que habían elaborado las Provincias. En ese sentido la elaboración de los contenidos curriculares del postítulo producen un quiebre con los contenidos que venían ofreciendo las provincias, pero al mismo tiempo el postítulo abre un camino para implementar los nuevos NAP (Núcleos de Aprendizaje Prioritarios) aprobados a fines de 2018 que incluyen contenidos de Robótica y Programación. Los postítulos se convierten así en una herramienta de la política educativa para promover cambios en los contenidos.

6. Bibliografía

ACM (2013) Computer Science Curriculum.

ACM (2016). K-12 Computer Science Framework.

Benítez Larghi, S. et al. "De brechas, pobrezas y apropiaciones. Juventud, sectores populares y TIC en la Argentina." *revista Versión, México* (2011).

- Casali, A., Zanarini, D., Monjelat, N., & San Martín, P. (2018a). Teaching and Learning Computer Science for Primary School Teachers: an Argentine Experience. In Proceedings of LACLO 2018 (pp. 1–8).
- Casali, A., Zanarini, D., San Martín, P. S., & Monjelat, N. (2018b). Pensamiento Computacional y Programación en la Formación de Docentes del Nivel Primario. In G. Dapozo (Ed.), XX Workshop de Investigadores en Ciencias de la Computación (pp.

- 451–455). Corrientes, Argentina: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas.
- Churches, A. (2008) "Bloom's taxonomy blooms digitally." Tech & Learning 1: 1-6.
- Consejo Federal de Educación (12 de agosto de 2015). Resolución CFE № 263/15. Buenos Aires, Argentina
- CUCEN. Consejo Universitario de Ciencias Exactas y Naturales. Propuestas de Estándares para la formación del docente en informática.
- Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young, P. R. (1989). Computing as a discipline. *Computer*, *22*(2), 63-70.
- Elmore, R. F. (1979). "Backward mapping: Implementation research and policy decisions." *Political science quarterly* 94 (4)., pp. 601-616.
- Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Gebhardt, E. (2014). Preparing for life in a digital age: The IEA International Computer and Information Literacy Study international report. Disponible en https://research.acer.edu.au/cgi/viewcontent.cgi?article=1009&context=ict_literacy
- Gvirtz, S. y Palamidessi, M. (1998) El ABC de la tarea docente: currículum y enseñanza. Vol. 1. Buenos Aires: Aique.
- Gobierno de Santa Fe, Ministerio de Educación. (2009a). Profesorado de Educación Primaria. Diseño Curricular para la Formación Docente. Santa Fe, Argentina.
- Gobierno de Santa Fe, Ministerio de Educación. (2009b). Profesorado de Educación Inicial. Diseño para la Formación Docente. Santa Fe, Argentina.
- Hazzan, O., Gal-Ezer, J., & Blum, L. (2008). A model for high school computer science education: The four key elements that make it!. *ACM SIGCSE Bulletin*, 40(1), 281-285.
- Krathwohl, D. R. "A revision of Bloom's taxonomy: An overview." *Theory into practice* 41.4 (2002): 212-218.
- Larraburu, S. R., Chapani, D. T., Garcia Romano, L., & Farré, A. (2016). Las políticas públicas y la implementación de las TIC en las clases de Ciencias Naturales. Aula Universitaria, (18), 20–28. https://doi.org/10.14409/au.v0i18.6554
- Ministerio de Educación Provincia de Santa Fe (2016). Núcleos Interdisciplinarios de Contenidos: la educación en acontecimientos. Documento de desarrollo curricular para la educación primaria y secundaria. Santa Fe, Argentina.
- Ministerio de Educación. (2011). Núcleos de Aprendizajes Prioritarios. Educación Inicial. Buenos Aires, Argentina.
- Ministerio de Educación. (2012a). Núcleos de Aprendizajes Prioritarios. 1o ciclo educación primaria 1°, 2° y 3° Años. Buenos Aires, Argentina.
- Ministerio de Educación. (2012b). Núcleos de Aprendizajes Prioritarios. 20 ciclo educación primaria 4°, 5° y 6° Años. Buenos Aires, Argentina.
- Ministerio de Educación de la Provincia de Córdoba (2012) Diseño Curricular de Educación Secundaria.
- Monjelat, N. (2017). Programming technologies for social Inclusion: An experience in professional development with elementary teachers. In 12th Latin American Conference on Learning Objects and Technologies, LACLO 2017 (Vol. 2017–January). https://doi.org/10.1109/LACLO.2017.8120901

- Patterson, D. A. "Computer science education in the 21 st century." Communications of the ACM 49.3 (2006): 27-30.
- Resolución N° 2630/14. Diseño curricular. Educación Secundaria Orientada Provincia de Santa Fe. Ministerio de Educación de Santa Fe. Santa Fe, 30 de diciembre de 2014.
- Terigi, F. (1999). Conceptos para el análisis de políticas curriculares. En *Currículo: itinerario para aprehender un territorio.* Buenos Aires: Editorial Santillana, 115-136.